Sains Malaysiana 53(10)(2024): 3315-3326
http://doi.org/10.17576/jsm-2024-5310-07
Kajian
Teori Fungsian Ketumpatan pada Struktur, Tapak Perangkap Muon dan Interaksi Hiperhalus Muon dalam Poli(3-heksiltiofena-2,5-dil)
(Density
Functional Theory Study on the Structure, Muon Trapping Sites and Muon
Hyperfine Interactions in Poly(3-hexylthiophene-2,5-diyl))
WAN
NURFADHILAH ZAHARIM1,2,3,*, SHUKRI SULAIMAN4,5, RISDIANA6,
LUSI SAFRIANI6 & RIZAFIZAH OTHAMAN1,2
1Department of Chemical Sciences,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Polymer Research Centre, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600 UKM Bangi, Selangor,
Malaysia
3Nuclear Structure Research Group,
RIKEN Nishina Center for Accelerator Based Science,
2-1 Hirosawa, Saitama 351-0198, Wako, Japan
4Physics Section, School of Distance
Education, Universiti Sains Malaysia, 11800 Minden,
Pulau Pinang, Malaysia
5Computational Physics Laboratory,
School of Distance Education, Universiti Sains
Malaysia, 11800 Minden, Pulau Pinang, Malaysia
6Department of Physics, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21 Jatinangor, Sumedang 45363, Indonesia
Received: 29 May 2024/Accepted:
30 July 2024
Abstrak
Polimer semikonduktor seperti Poli(3-heksiltiofena-2,5-dil) (P3HT) telah mendapat perhatian kerana sifatnya dan telah digunakan dalam sel suria.
Kadar resapan elektron dalam bahan ini dapat memberikan maklumat penting tentang angkutan cas. Spektroskopi muon adalah satu kaedah yang sensitif dengan suasana mikroskopik bahan dan mampu memberikan gambaran tentang sifat resapan elektron. Penghitungan kadar resapan D memerlukan pengetahuan tentang nilai interaksi hiperhalus muon yang sukar diperoleh melalui uji kaji. Oleh itu kaedah Teori Fungsian Ketumpatan (DFT) telah digunakan dalam penyelidikan ini untuk mencari tapak stabil muon di dalam P3HT dan seterusnya menghitung nilai interaksi hiperhalus. Dalam kajian ini semua struktur yang dioptimumkan bagi sistem perumah dan sistem termuonat telah diperoleh dengan menggunakan kaedah DFT pada tahap B3LYP/6-311++G(d,p). Kajian ini menunjukkan bahawa kehadiran muon di dalam bahan ini menyebabkan perubahan ketara pada ciri-ciri HOMO dan
LUMO. Tapak C5 dan C2 yang terletak bersebelahan sulfur adalah yang paling stabil dengan nilai interaksi hiperhalus muon sebanyak 267.4 MHz dan 293.8 MHz. Walaupun kedua-dua tapak ini mempunyai nilai tenaga yang hampir sama, namun suasana taburan lokal spin elektron adalah berbeza.
Kata kunci: Interaksi hiperhalus; muon;
P3HT; Teori Fungsian Ketumpatan
Abstract
Semiconducting polymers such as Poly(3-hexylthiophene-2,5-diyl) (P3HT)
have gained attention due to their properties and have been used in solar
cells. The electron diffusion rate in this material can provide important
information about charge transport through the material. Muon
spectroscopy is a method that is sensitive to the microscopic state of the
matter and can provide an insight into the nature of electron diffusion.
Calculation of the diffusion rate D requires knowledge of the muon
hyperfine interaction value which is difficult to obtain experimentally. Therefore, Density Functional Theory (DFT) method was used in this
investigation to find muon stable sites in P3HT and subsequently determine the
value of hyperfine interaction. In this study, all the optimized structures of
host and muoniated systems were obtained by using DFT method at B3LYP/6-311++G(d,p) level. This investigation shows that the presence of muon
in this material causes significant changes in HOMO and LUMO characteristics.
C5 and C2 that are located beside the sulphur atom, were found to be the most
stable sites with muon hyperfine interaction values of 267.4 MHz and 293.8 MHz,
respectively. Although these two sites have almost the same energy value, the
local distributions of electron spin are different.
Keywords: Density
Functional Theory; hyperfine interaction; muon; P3HT
REFERENCES
Ahmad, Z.,
Awais, M., Najeeb, M.A., Shakoor, R.A. & Touati, F. 2017. Poly(3-hexylthiophene)
(P3HT), poly(gamma-benzyl-l-glutamate) (PBLG) and poly(methyl methacrylate)
(PMMA) as energy harvesting materials. In Smart
Polymer Nanocomposites, edited by Ponnamma, D., Sadasivuni, K., Cabibihan, J.J. &
Al-Maadeed, M.A. Springer. hlm. 95-118.
Bahtiar,
A., Safriani, L., Aprilia, A., Risdiana, R., Harsojo, H., Triwikantoro, T.,
Darminto, D., Nugroho, A.A., Guo, H., Kawasaki, I. & Watanabe, I. 2015. Study of charge
carrier dynamics of P3HT:PCBM blend for active material solar cell using muon
spin relation. Materials Science Forum. Trans Tech Publ. hlm. 168-173.
Becke, A.D. 1993.
Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 98(7):
5648-5652.
Brodovitch,
J.C., Addison-Jones, B., Ghandi, K., McKenzie, I., Percival, P.W. & Schüth,
J. 2003.
Free radicals formed by H (Mu) addition to fluoranthene. Canadian Journal of Chemistry 81(1): 1-6.
Dennington,
R.D.I.I., Keith, T.A. & Millam, J.M. 2016. GaussView, version
6.0. 16. Semichem Inc. Shawnee Mission
KS.
Frisch,
M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman,
J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X.,
Caricato, M., Marenich, A., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci,
B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L.,
Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B.,
Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega,
N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R.,
Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H.,
Vreven, T., Throssell, K., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F.,
Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith,
T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C.,
Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C.,
Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman,
J.B. & Fox, D.J. 2009. Gaussian 09 Software. Wallingford:
Gaussian Inc.
Hermosilla,
L., Calle, P., García De La Vega, J.M. & Sieiro, C. 2005. Density functional theory
predictions of isotropic hyperfine coupling constants. The Journal of Physical Chemistry A 109(6): 1114-1124.
Jamaludin,
A., Zaharim, W.N., Sulaiman, S., Rozak, H., Sin, A.L. & Watanabe, I. 2022. Density functional
theory investigation of muon hyperfine interaction in guanine–cytosine
double-strand DNA. Journal of the
Physical Society of Japan 91(2): 024301.
James, B. & Frisch,
A. 1996. Exploring Chemistry with
Electronic Structure Methods. 2nd ed. Pittsburgh: Gaussian, Inc.
Kilina, S., Tretiak, S.,
Yarotski, D.A., Zhu, J.X., Modine, N., Taylor, A. & Balatsky, A.V. 2007.
Electronic properties of DNA base molecules adsorbed on a metallic surface. The Journal of Physical Chemistry C 111(39): 14541-14551.
Kim, S.,
Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A.,
Thiessen, P.A., Yu, B. & Zaslavsky, L. 2023. PubChem 2023 update. Nucleic
Acids Research 51(D1): D1373-D1380.
Lee, C.,
Yang, W. & Parr, R.G. 1988. Development of the Colle-Salvetti correlation-energy formula into a
functional of the electron density. Physical
Review B 37(2): 785-789.
McKenzie, I. 2019.
Hydrogen-atom addition to nucleobases in the solid state: Characterization of
the corresponding muoniated radicals using μSR. The Journal of Physical Chemistry B 123(21): 4540-4549.
Mohd-Tajudin,
S.S., Zaharim, W.N., Shukri, S., Ahmad, S.N.A., Hasan-Baseri, D.F., Sin, A.L.,
Risdiana, R., Safriani, L. & Watanabe, I. 2023. Functional effect in density
functional theory calculation of Au23(SR)16 nanocluster. Journal of Metastable and Nanocrystalline
Materials 37: 65-70.
Möller,
J.S., Bonfà, P., Ceresoli, D., Bernardini, F., Blundell, S.J., Lancaster, T.,
De Renzi, R., Marzari, N., Watanabe, I., Sulaiman, S. & Mohamed-Ibrahim,
M.I. 2013.
Playing quantum hide-and-seek with the muon: Localizing muon stopping sites. Physica Scripta 88(6): 068510.
Percival,
P.W., Addison-Jones, B., Brodovitch, J.C., Ghandi, K. & Schüth, J. 1999. Free radicals
formed by H (Mu) addition to pyrene. Canadian
Journal of Chemistry 77(3): 326-32.
Poirier,
R., Kari, R. & Csizmadia, I.G. 1985. Handbook of Gaussian basis sets: A Compendium
of Ab-initio Molecular Orbital Calculations. Volume 24. Elsevier.
Rengifo, E.
& Murillo, G. 2012. DFT-based investigation of the electronic structure of a double-stranded
AC B-DNA dim. Revista de Ciencias 16:
117-122.
Riveli, N. &
Risdiana, R. 2021. Study on the diffusion rate of the charge carrier transport
in regio-random and regio-regular P3HT. Materials
Science Forum. Trans Tech Publ. hlm. 204-209.
Riveli, N.,
Adiperdana, B., Safriani, L., Suroto, B.J., Noviyanti, A.R., Mohammad, I.H.,
Rahayu, I., Manawan, M., Saragi, T. & Risdiana, R. 2019. Study on the diffusion rate
of the charge carrier transport in regio-random P3HT. Materials Science Forum. Trans Tech Publ. hlm. 471-475.
Roduner, E. 2012. The Positive Muon as a Probe in Free Radical
Chemistry: Potential and Limitations of the µSR Techniques. Heidelberg:
Springer Berlin.
Safriani,
L., Risdiana, R., Bahtiar, A., Aprilia, A., Kawasaki, I. & Watanabe, I. 2015. μSR study of
charge carrier motion in active layer P3HT:ZnO:PCBM hybrid solar cells. Materials Science Forum 827: 131-134.
Sahoo, N.,
Sulaiman, S., Mishra, K.C. & Das, T.P. 1989. Theory of structure and
hyperfine properties of anomalous muonium in elemental semiconductors: Diamond,
silicon, and germanium. Physical Review B 39(18): 13389.
Sulaiman, S. 1992. First
principles investigation of electronic structures and hyperfine properties of
semiconductors and high-Tc superconductors. PhD Thesis. Albany:
State University of New York at Albany (Unpublished).
Tomberg, A. 2013. Gaussian
09W Tutorial. An Introduction to
Computational Chemistry using G09W and Avogadro Software. hlm. 1-36.
https://barrett-group.mcgill.ca/tutorials/Gaussian%20tutorial.pdf
Tremel, K. &
Ludwigs, S. 2014. Morphology of P3HT in thin films in relation to optical and
electrical properties. In P3HT Revisited
- From Molecular Scale to Solar Cell Devices. Advances in Polymer
Science. Vol 265, edited by Ludwigs, S. Heidelberg: Springer Berlin. hlm.
39-82.
Weinhold,
F., Landis, C.R. & Glendening, E.D. 2016. What is NBO analysis and how is
it useful? International Reviews in Physical Chemistry 35(3):
399-440.
Weltner, W. 1989. Magnetic Atoms and Molecules. New York:
Dover Publication.
Yu, D.,
Percival, P.W., Brodovitch, J.C., Leung, S.K., Kiefl, R.F., Venkateswaran, K.
& Cox, S.F.
1990. Structure and intramolecular motion of muonium-substituted
cyclohexadienyl radicals. Chemical
Physics 142(2): 229-236.
Zaharim,
W.N., Sulaiman, S., Jamaludin, A., Rozak, H. & Watanabe, I. 2024. Density
functional theory investigation of electronic structure and muon hyperfine
interaction in isolated adenine and thymine. Interactions 245(1): 47.
Zaharim,
W.N., Ahmad, S.N., Sulaiman, S., Rozak, H., Hasan Baseri, D.F., Mohamad Rosli,
N.A., Mohd-Tajudin, S.S., Ang, L.S. & Watanabe, I. 2021a. Density functional theory
study of 12mer single-strand guanine oligomer and associated muon hyperfine
interaction. ACS Omega6(44):
29641-29650.
Zaharim,
W.N., Rozak, H., Sulaiman, S., Ahmad, S.N.A., Baseri, D.F.H., Mohd-Tajudin,
S.S., Sin, A.L. & Watanabe, I. 2021b. Density functional theory investigation of
hyperfine interaction in DNA nucleobase and nucleotide muoniated radicals. Journal of the Physical Society of Japan 90(4): 044301.
Zaharim, W.N., Shukri,
S., Mohd Tajudin, S.S., Abu Bakar, S.N., Ismail, N.E., Rozak, H. &
Watanabe, I. 2020. Basis set effects in density functional theory calculation
of muoniated cytosine nucleobase. Key
Engineering Materials. Trans Tech Publ. hlm. 282-287.
Zaharim,
W.N., Shukri, S., Bakar, S.N.A., Ismail, N.E., Rozak, H. & Watanabe, I. 2019. The effects of
split valence basis sets on muon hyperfine interaction in guanine nucleobase
and nucleotide structures. Materials
Science Forum. Trans Tech Publ. hlm. 222-228.
*Corresponding author;
email: wannurfadhilah@ukm.edu.my